Total No. of Questions - 24

Total No. of Printed Pages - 3

Regd.
No.

Part - III

MATHEMATICS, Paper - I (A)

(Algebra, Vector Algebra and Trigonometry)

(English Version)

Time: 3 Hours

Max. Marks: 75

Note: This question paper consists of three sections A, B and C.

SECTION A

Very short answer type questions.

 $10 \times 2 = 20$

- i) Answer all questions.
- ii) Each question carries two marks.
- 1. If $f = \{(1,2), (2,-3), (3,-1)\}$, then find:
 - i) 2 *f*

- ii) 2+f
- **2.** Find the domain of the real valued function $f(x) = \sqrt{x^2 25}$.
- 3. Let $\overline{a} = 2\overline{i} + 4\overline{j} 5\overline{k}$, $\overline{b} = \overline{i} + \overline{j} + \overline{k}$ and $\overline{c} = \overline{j} + 2\overline{k}$. Find the unit vector in the opposite direction of $\overline{a} + \overline{b} + \overline{c}$.
- 4. Find the vector equation of the plane which passes through the points $2\overline{i} + 4\overline{j} + 2\overline{k}$, $2\overline{i} + 3\overline{j} + 5\overline{k}$ and parallel to the vector $3\overline{i} 2\overline{j} + \overline{k}$.
- 5. If $\overline{a} = (4, 3, 5)$ is the center of a sphere which passes through the point (-1, -1, 2), then find the cartesian equation of the sphere.
- 6. Find the period of the function defined by $f(x) = Sin(x + 2x + + nx) \text{ for all } x \in R \text{ and } n \in Z^+.$

- 7. If $3Sin\theta + 4Cos\theta = 5$, then find the value of $4Sin\theta 3Cos\theta$.
- 8. If $Sinh x = \frac{3}{4}$, find Cosh(2x) and Sinh(2x).
- 9. Show that in a $\triangle ABC$, $b \cdot Cos^2 \frac{C}{2} + c \cdot Cos^2 \frac{B}{2} = s$.
- 10. If the amplitude of (z-1) is $\frac{\pi}{2}$, then find the locus of z where z=x+iy.

SECTION B

II. Short answer type questions.

 $5 \times 4 = 20$

- i) Attempt any five questions.
- ii) Each question carries four marks.
- 11. If \overline{a} , \overline{b} , \overline{c} are linearly independent vectors, then show that $\overline{a} 3\overline{b} + 2\overline{c}$, $2\overline{a} 4\overline{b} \overline{c}$ and $3\overline{a} + 2\overline{b} \overline{c}$ are linearly independent.
- 12. If $0 \le \alpha$, $\beta \le \pi$, then show that $Sin(\alpha \beta) = Sin \alpha Cos \beta Cos \alpha Sin \beta$ by the vector method.
- 13. If A is not an integral multiple of π , prove that $Cos A \cdot Cos 2A \cdot Cos 4A \cdot Cos 8A = \frac{Sin 16A}{16Sin A}.$
- 14. Solve the equation $\cot^2 x (\sqrt{3} + 1)\cot x + \sqrt{3} = 0$ where $\left(0 < x < \frac{\pi}{2}\right)$
- 15. Find the value of $Tan\left(Cos^{-1}\frac{4}{5} + Tan^{-1}\frac{2}{3}\right)$.
- 16. If $Sin \theta = \frac{a}{b+c}$, then show that $Cos \theta = \frac{2\sqrt{bc}}{b+c} Cos \frac{A}{2}$.
- 17. Show that $16Sin^5\theta = Sin 5\theta 5Sin 3\theta + 10Sin \theta$.

III. Long answer type questions.

 $5 \times 7 = 35$

- i) Attempt any five questions.
- ii) Each question carries seven marks.
- **18.** Let $f: A \to B$ be a bijection, then show that $f \circ f^{-1} = I_B$ and $f^{-1} \circ f = I_A$.
- 19. Using mathematical induction, prove that

$$1^{2} - (1^{2} + 2^{2}) + (1^{2} + 2^{2} + 3^{2}) + \dots \text{ upto } n \text{ terms} = \frac{n(n+1)^{2}(n+2)}{12} \ \forall \ n \in \mathbb{N}.$$

- **20.** If A = (1, -2, -1), B = (4, 0, -3), C = (1, 2, -1), D = (2, -4, -5), then find the distance between the lines AB and CD.
- **21.** If $A + B + C = 180^{\circ}$, then prove that

$$Cos^2\frac{A}{2} + Cos^2\frac{B}{2} + Cos^2\frac{C}{2} = 2\bigg(1 + Sin\frac{A}{2}\ Sin\frac{B}{2}\ Sin\frac{C}{2}\bigg).$$

- **22.** In a $\triangle ABC$, show that $r + r_1 + r_2 r_3 = 4R \cos C$.
- On a tower AB of height h, there is a flag staff BC. At a point 'd' meters away from the foot of the tower, AB and BC are making equal angles.

Show that the height of the flag staff is $h\left(\frac{d^2+h^2}{d^2-h^2}\right)$ meters.

24. If *n* is an integer and $z = Cis\theta$, $\theta \neq (2n+1)\frac{\pi}{2}$, then show that

$$\frac{z^{2n}-1}{z^{2n}+1}=iTann\theta.$$